Global Testing under Sparse Alternatives: ANOVA, Multiple Comparisons and the Higher Criticism

نویسندگان

  • Ery Arias-Castro
  • Emmanuel J. Candès
  • Yaniv Plan
چکیده

Testing for the significance of a subset of regression coefficients in a linear model, a staple of statistical analysis, goes back at least to the work of Fisher who introduced the analysis of variance (ANOVA). We study this problem under the assumption that the coefficient vector is sparse, a common situation in modern high-dimensional settings. Suppose we have p covariates and that under the alternative, the response only depends upon on the order of p of those, 0 ≤ α ≤ 1. Under moderate sparsity levels, i.e. 0 ≤ α ≤ 1/2, we show that ANOVA is essentially optimal under some conditions on the design. This is no longer the case under strong sparsity constraints, i.e. α > 1/2. In such settings, a multiple comparison procedure is often preferred and we establish its optimality when α ≥ 3/4. However, these two very popular methods are suboptimal, and sometimes powerless, under moderately strong sparsity where 1/2 < α < 3/4. We suggest a method based on the Higher Criticism that is powerful in the whole range α > 1/2. This optimality property is true for a variety of designs, including the classical (balanced) multi-way designs and more modern ‘p > n’ designs arising in genetics and signal processing. In addition to the standard fixed effects model, we establish similar results for a random effects model where the nonzero coefficients of the regression vector are normally distributed. MSC 2000: Primary 62G10, 94A13; secondary 62G20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GLOBAL TESTING UNDER SPARSE ALTERNATIVES: ANOVA, MULTIPLE COMPARISONS AND THE HIGHER CRITICISM By

Testing for the significance of a subset of regression coefficients in a linear model, a staple of statistical analysis, goes back at least to the work of Fisher who introduced the analysis of variance (ANOVA). We study this problem under the assumption that the coefficient vector is sparse, a common situation in modern high-dimensional settings. Suppose we have p covariates and that under the ...

متن کامل

Global Testing under Sparse Alternatives: Anova, Multiple Comparisons and the Higher Criticism1 by Ery Arias-castro,

Testing for the significance of a subset of regression coefficients in a linear model, a staple of statistical analysis, goes back at least to the work of Fisher who introduced the analysis of variance (ANOVA). We study this problem under the assumption that the coefficient vector is sparse, a common situation in modern high-dimensional settings. Suppose we have p covariates and that under the ...

متن کامل

To “ Global Testing under Sparse Alternatives : Anova , Multiple Comparisons and the Higher Criticism ”

We prove the results stated in the main paper. We start by providing a brief summary of the notations used in the paper. Set [p] = {1, . . . , p} and for a subset J ⊂ [p], let |J | be its cardinality. Bold upper (resp. lower) case letters denote matrices (resp. vectors), and the same letter not bold represents its coefficients, e.g. aj denotes the jth entry of a. For an n × p matrix A with colu...

متن کامل

Global Testing against Sparse Alternatives in Time - Frequency Analysis

In this paper, an over-sampled periodogram higher criticism (OPHC) test is proposed for the global detection of sparse periodic effects in a complexvalued time series. An explicit minimax detection boundary is established between the rareness and weakness of the complex sinusoids hidden in the series. The OPHC test is shown to be asymptotically powerful in the detectable region. Numerical simul...

متن کامل

A New Balancing and Ranking Method based on Hesitant Fuzzy Sets for Solving Decision-making Problems under Uncertainty

The purpose of this paper is to extend a new balancing and ranking method to handle uncertainty for a multiple attribute analysis under a hesitant fuzzy environment. The presented hesitant fuzzy balancing and ranking (HF-BR) method does not require attributes’ weights through the process of multiple attribute decision making (MADM) under hesitant conditions. For the rating of possible alternati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010